Times are displayed in (UTC-07:00) Pacific Time (US & Canada)Change
Session: 10-01 Interactive Presentations
Paper Number: 100277
100277 - Dual Converging Jets for Enhanced Liquid Impingement Cooling
Jet impingement cooling is an advanced thermal management technique for high heat flux applications. Standard configurations include single, axisymmetric jets with orifice, slot, or pipe nozzles. This choice in nozzle shape, number of jets and jet inclination greatly influences the turbulence generated caused by fluid entrainment due to differences in initial velocity profiles and location of secondary stagnation points. Regarding high power electronics with integrated jet impingement schemes, turbulence and heat transfer rates must be optimized to meet the extreme cooling requirements. In this study, the heat transfer rates of dual inclined converging jets are investigated experimentally. Emphasis is placed on the comparison of different jet schemes with respect to geometrical parameters including nozzle pitch, incline angle, and nozzle-to-targe plate spacing. A parametric experimental investigation is performed as a point of comparison using a modular, additively manufactured jet setup. Thermal energy is applied to an aluminum base plate using a 200 W resistive heater to emulate a hot spot generated in high-power electronics. It is observed that the introduction of inclined and parallel jets can have the simultaneous effect of increasing heat transfer by 10 %. Moreover, the augemented jets can improve the coolng predictability in a confined jet configuration.
Presenting Author: Reece Whitt University of Arkansas
Dual Converging Jets for Enhanced Liquid Impingement Cooling